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Abstract

We study the stability of some critical (or equilibrium) shapes in the minimization
problem of the energy dissipated by a fluid (i.e. the drag minimization problem)
governed by the Stokes equations. We first compute the shape derivative up to the
second order, then provide a sufficient condition for the shape Hessian of the energy
functional to be coercive at a critical shape. Under this condition, the existence of such
a local strict minimum is then proved using a precise upper bound for the variations of
the second order shape derivative of the functional with respect to the coercivity and
differentiability norms. Finally, for smooth domains, a lower bound of the variations
of the drag is obtained in terms of the measure of the symmetric difference of domains.

Keywords: stability of critical shape, drag minimization, optimal profiles, shape cal-
culus, shape Hessian, Stokes equations.
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1 Introduction

In fluid mechanics, the study of the minimization of the drag of a body in a fluid (i.e. the
computation of optimal profiles) is a very popular problem. A typical application is the
study of the geometry of blunt bodies in flow at low Reynolds numbers (see [17]). In this
work, the parameter is the shape of the body immersed in the fluid and we are interested
in studying the stability of this shape optimization problem.

In an optimization problem, the study of the stability consists to know if a critical
shape of a functional is a local strict minimizer. This point is particularly crucial in order
to make numerical simulations: if the problem is unstable, regularization is required in
the numerical minimization of the functional (see for example [2, 3]). The question of
stability is addressed with the second order derivative of the functional at a critical point.
The notion of derivative used in this work is the now classic shape calculus (Hadamard’s
approach) presented for example in [15, 18, 19, 21].

The strategy we follow is the following: a first step is to prove the existence of second
order shape derivatives. It is classically obtained through an implicit function theorem:
this is due to Simon [20] for Stokes equations and to Bello et al. [5, 6] for the Navier-Stokes
equations). In a second step, we obtain the Euler-Lagrange equation, then we compute
the shape Hessian. These shape derivatives of the drag (at least at the first order) was
computed by some authors (see for example [20] for the Stokes equations and [6, 4] for
the Navier-Stokes equations). However, in this work, we need a different expression of the
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shape Hessian (in [20]). Then, we use the Euler-Lagrange equations and some computations
to derive a sufficient condition of positivity of the shape Hessian computed at a critical
shape.

In a third step, we prove the stability of the minimization. In finite dimension, the
knowledge of the sign of the Hessian permits to fully answer the question of stability using
Taylor-Young expansion. However, in shape optimization or in infinite dimension, the
two norms discrepancy problem can occur: the coercivity norm is often weaker than the
differentiability norm. Let us refer to the paper [11] by Descloux for a concrete example of
such a situation known as the magnetic shaping problem: on this example, the coercivity
at a critical point holds in the H1/2 norm while the differentiability holds in C2 topology.
Since the quantity o(‖·‖C2) is not smaller than C ‖·‖2H1/2 , the classical argument using the
Taylor-Young formula does not insure that this critical point is a local strict minimum. A
method to overcome this problem is given by Dambrine et al. in [10, 9]. The key is a precise
estimate of the variations of the second order shape derivative of the functional with respect
to the coercivity and differentiability norms around a critical shape. In [10, 9], the authors
study Poisson’s equation or the case of a strictly and uniformly elliptic operator. Here,
we adapt these methods to the drag minimization problem for a Stokes flow. Finally, in a
fourth and last step, we derive a precise version of the minimality inequality: we provide a
lower bound of the variations of the drag in term of a geometrical quantity following new
ideas introduced by Fusco et al. [13, 1].

The paper is organized as follows. We first define the studied problem: we define the
shape functional under consideration and the used domain perturbations. In particular,
we recall some geometrical constructions from [10, 9]. In Section 3, following Hadamard’s
approach, we use shape calculus to prove the coercivity of the shape Hessian of the con-
sidered functional at an equilibrium shape in the H1/2 norm. Then, in Section 4, we state
the main result of this work which is a stability result for the drag minimization problem.
It claims that a critical shape can be a local strict minimum if a given criterion is satisfied.
In Section 5, we translate our result in a more explicit estimation in purely geometrical
quantities. Finally, we conclude the paper in Section 6 mentioning some possible extensions
and prospects concerning the problem we study here.

2 The problem setting

2.1 General notations

Let us introduce the notations that we adopt in this paper. For an open set Ω ⊂ Rd
(d = 2 or 3), we denote by Lp(Ω), Wm,p(Ω) and Hs(Ω) the usual Lebesgue and Sobolev
spaces. We note in bold the vectorial functions and spaces: Lp(Ω), Wm,p(Ω), Hs(Ω), etc.
Moreover, for k ∈ N and α ∈ (0, 1), the space Ck(Ω) is defined as the set of functions having
continuous derivatives up to order k in Ω and Ck,α(Ω) denotes the usual Hölder space. We
denote by |Ω| the measure of Ω. Moreover, n represents the external unit normal to ∂Ω,
and for a smooth enough function u, we note ∂nu the normal derivative of u. Finally, we
define the space

L2
0(Ω) :=

{
p ∈ L2(Ω),

∫
Ω
p = 0

}
.
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2.2 Tubular coordinates and normal representation of a perturbed do-
main

Let us recall some basic facts from differential geometry and fix the notations. We follow
in this paragraph the constructions and proof of [10]. Let Ω be a smooth bounded open
set and let n denote the outer unit normal field to ∂Ω. There is a non negative real ρ(Ω),
such that the application T∂Ω defined by

T∂Ω : ∂Ω× R → Rd
(M,h) 7→ M + h n(M)

is a local diffeomorphism from ∂Ω× (−ρ(Ω), ρ(Ω)) on an open tubular neighborhood of ∂Ω
we will denote T∂Ω. This property expresses the fact that any point x in T∂Ω has a unique
orthogonal projection p∂Ω(x) on ∂Ω and that the relation

x = p∂Ω(x) + h(x) n(p∂Ω(x)) where |h(x)| = ‖x− p∂Ω(x)‖,

holds. Notice that h is uniquely defined.
Let us recall the definition of the Micheletti’s distance on the set S of C2,α bounded

domains of Rd that are diffeomorphic to Ω. The idea is to use the Banach imbedding of
diffeomorphisms in C2,α(Rd,Rd). For Ω1 and Ω2 in S, set

d2,α(Ω1,Ω2) := inf
(
‖Θ− I‖2,α + ‖Θ−1 − I‖2,α

)
where the infimum is taken over all the diffeomorphisms Θ ∈ C2,α(Rd) mapping Ω1 onto Ω2.
In particular, if Θ is a perturbation of the identity such that

‖Θ− I‖2,α + ‖Θ−1 − I‖2,α < ρ(Ω),

any point of the boundary ∂Ωper of the perturbed domain Ωper := Θ(Ω) lays in the tubular
neighborhood T∂Ω of ∂Ω so that it can be described in terms of normal deformations: for
all x ∈ ∂Ω

Θ(x) = RΘ(x) + d∂Ω(Θ(x)) n(RΘ(x)),

where RΘ is a diffeomorphism from ∂Ω into itself and d∂Ω is the signed distance to ∂Ω.
Note that ñ := ∇d∂Ω is a unitary extension of the normal field that coincides with n ◦ p∂Ω

in the tubular neighborhood T∂Ω.
As a consequence, the flow Φt of the vector field XΘ defined in T∂Ω by

XΘ(x) = h(x) n(p∂Ω(x)) (2.1)

defines a path t ∈ [0, 1] 7→ Ωt within domains connecting Ω0 = Ω to Ω1 = Ωper. However,
this flow does not in general preserve the volume of the domain even if the original and
perturbed domains share the same volume. Therefore, an alternative field Y Θ defined in
tubular coordinates (M,h) by

Y Θ(M,h) = −

∫ d∂Ω(Θ◦R−1
Θ (M))

0
det DT∂Ω(M, s) ds

det DT∂Ω(M,h)
n(M) (2.2)

was build in [9, Subsection 2.1] in order to deal with volume constraint. Indeed, the
divergence of Y Θ cancels in the tubular neighborhood T∂Ω and the flow of Y Θ preserves
the measure of Ω for t in [0, 1].
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Let us remark that the fieldXΘ involves the normal field n to ∂Ω and that Y Θ involves
first order derivatives of n. Hence their flow is a C2,α -diffeomorphism that is to say let
stable the admissible class of domain under additional regularity assumptions. Let us
assume from now on that the initial shape is in fact C4,α. For time t ∈ [0, 1], the flow Φt

of both fields XΘ and Y Θ remains a perturbation of the identity: there is a constant C
such that, for all t ∈ [0, 1]:

‖Φt − I‖2,α ≤ C‖Θ− I‖2,α. (2.3)

Noting that the outer normal field nt to Ωt can be written as

nt(y) =
∇(d∂Ω ◦ Φ−1

t )

‖∇(d∂Ω ◦ Φ−1
t )‖

(y), ∀y ∈ ∂Ω,

the following estimates are a consequence of the Faà De Bruno’s formula of successive
derivatives of a composition:

Lemma 2.1. Let Ω be a bounded open set of Rd with a C4,α boundary. There is a constant
C > 0 depending on Ω such that

• the surface jacobian J(t) := det DΦt/‖(tDΦ−1
t )n‖ satisfies

‖J(t, .)− 1‖C1(∂Ω) ≤ C‖Φt − I‖2,α, ∀t ∈ [0, 1]; (2.4)

• the normal field nt to ∂Ωt satisfies

‖nt(Φt(.)) − n(.)‖C1(∂Ω) ≤ C‖Φt − I‖2,α, ∀t ∈ [0, 1]. (2.5)

• Set mV := V · ñ for V = XΘ or Y Θ, then for all t ∈ [0, 1]:

‖mV (Φt(.)) − mV ‖L2(∂Ω) ≤ C ‖mV ‖L2(∂Ω) ‖Φt − I‖2,α, (2.6)
‖mV (Φt(.)) − mV ‖H1/2(∂Ω) ≤ C ‖mV ‖H1/2(∂Ω) ‖Φt − I‖2,α. (2.7)

Remark 2.2. The fact that we have to impose a C4,α regularity of the boundary of the
initial shape (whereas we can work with shapes with a C2,1 boundary in order to have the
twice differentiability with respect to the domain) comes to the fact that we consider normal
perturbations (so we loose one rank of regularity) which are divergence free (which imposes
the lost of an additional derivative by construction): see [9, Section 2.1].

2.3 The general notations and the functional

The drag functional. Let Ω be a bounded and connected open subset of Rd (with d = 2
or d = 3) containing a Newtonian and incompressible fluid with coefficient of kinematic
viscosity ν > 0. We assume that Ω is smooth (at least with a C2,1 boundary). We also
assume that ν is constant. Let δ > 0 fixed (large). We define the set of admissible shapes
by

Oδ :=
{
ω ⊂ Ω open set with a C2,1 boundary such that d(x, ∂Ω) > δ, ∀x ∈ ω

and such that Ω\ω is connected
}
.
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Let us consider g ∈ C2,α(∂Ω), with α ∈ (0, 1), satisfying the compatibility condition∫
∂Ω
g · n = 0 and the unique solution (u, p) ∈ C2,α(Ω\ω)×

[
C1,α(Ω\ω) ∩ L2

0(Ω\ω)
]
of


−ν∆u+∇p = 0 in Ω\ω

divu = 0 in Ω\ω
u = g on ∂Ω
u = 0 on ∂ω.

The existence and uniqueness of the solution of such a problem is classical. We refer for
example to the book of Galdi [14, Theorems IV.7.1 and IV.7.2]. The energy dissipated by
the fluid is given by

J(ω) :=
1

2

∫
Ω\ω

ν |D(u)|2 ,

where

D(u) :=
(
∇u+ t∇u

)
= (∂iuj + ∂jui)i,j , i, j = 1, . . . , d.

The drag minimization problem is to minimize J over all subdomains ω of Ω with a given
measure M :

ω∗ := argmin
{
J(ω); ω ∈ Oδ such that Ld(ω) = M

}
,

where Ld denotes the Lebesgue measure on Rd.
We also define the following stress tensor:

σ(u, p) := ν
(
∇u+ t∇u

)
− p I.

Admissible deformations. Let ω ∈ Oδ. Let us define some admissible deformations of
the domain ω we will use in this paper. Since we want to perturb only ω (and not Ω which
is fixed), we define Ωδ an open set with a C∞ boundary and such that

{x ∈ Ω ; d(x, ∂Ω) > δ/2} ⊂ Ωδ ⊂ {x ∈ Ω ; d(x, ∂Ω) > δ/3} .

We then consider a diffeomorphism

Θ ∈ U :=
{
θ ∈ C2,1(Rd), θ ≡ I in Rd\Ωδ

}
.

The principle of Hadamard’s approach is to consider the flow ΦΘ,t of an adequate au-
tonomous vector field

V Θ ∈ U :=
{
θ ∈ C2,1(Rd); Supp θ ⊂ Ωδ

}
,

i.e. the solution of {
∂tΦ = V Θ(Φ)

Φ(0, x) = x.

Notice that V Θ represents one of the previous fields XΘ or Y Θ defined in Section 2.2.
It defines a regular path (ωt := ΦΘ,t(ω))t∈[0,1] in Oδ. For the rest of the paper, we use
a subscript "t" to indicate that the quantity is defined on the time t dependent domain.
For instance, nt is the external unit normal of Ω\ωt. Moreover, in order to simplify the
notations, we omit the dependency with respect to Θ: in particular, we use the notation Φt

instead of ΦΘ,t.
Let us now construct some vector fields whose flows connects the original shape ω∗ to

the perturbed domain ω1 = Θ(ω).
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3 Computation of the shape Hessian

In this section, we prove that the shape Hessian of the functional J can be coercive for
a critical shape ω∗ ∈ Oδ with a C4,α boundary in the H1/2(∂ω∗) norm. We assume the
existence of such a critical shape. We first define, for t ∈ [0, 1],

j(t) := J(ωt) :=
1

2

∫
Ω\ωt

ν |D(ut)|2 ,

where (ut, pt) ∈ C2,α(Ω\ωt) ×
[
C1,α(Ω\ωt) ∩ L2

0(Ω\ωt)
]
is the solution of the following

perturbed problem: 
−ν∆ut +∇pt = 0 in Ω\ωt

divut = 0 in Ω\ωt
ut = g on ∂Ω
ut = 0 on ∂ωt,

(3.1)

with ωt := Φt(ω
∗). The existence of the second order shape derivatives is proved in some

previous works (see for example [20, 3, 8] for the Stokes case and [5, 7] for the Navier-Stokes
case).

Let V ∈ U be divergence free. Classically, the shape derivative (u′t, p
′
t) which belongs

to C2,α(Ω\ωt) ×
[
C1,α(Ω\ωt) ∩ L2

0(Ω\ωt)
]
is characterized as the solution of the following

Stokes problem: 
−ν∆u′t +∇p′t = 0 in Ω\ωt

divu′t = 0 in Ω\ωt
u′t = 0 on ∂Ω
u′t = −∂ntut (V · nt) on ∂ωt.

(3.2)

3.1 Shape gradient of the functional and Euler-Lagrange equation

Simon proves in [20, Theorem 3] that

DJ(ω∗) · V = −1

2

∫
∂ω∗

ν |∂nu|2 (V · n).

Since we work under the constraint of constant volume and since ω∗ is a critical point,
there exists Λ0 ∈ R such that DJ(ω∗) · V + Λ0 DV(ω∗) · V = 0 for any perturbation V
(where V(ω∗) is the volume of ω∗). Hence, for all V ∈ U ,

−1

2

∫
∂ω∗

ν |∂nu|2 (V · n) + Λ0

∫
∂ω∗

V · n = 0,

and then we obtain the Euler-Lagrange equation satisfied at the critical shape: there exists
Λ ∈ R such that

|∂nu|2 =
2

ν
Λ0 =: Λ. (3.3)

Notice that this result is also proved in [20, Theorem 7] in a different way.

3.2 Shape Hessian of the functional

Let T be a fixed small positive real number. Simon proves in [20, Theorem 4] that, for
t ∈ [0, T ),

j′(t) = −1

2

∫
∂ωt

ν |D(ut)|2 (V · n).
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In [20, Theorem 8], the second variation j′′(0) is computed. However, we shall use a
simplified expression of j′′(0) which, in particular, does not depend on the second order
shape derivative of the state u. Let us obtain this new expression.

Since V = 0 on ∂Ω, we use Green’s formula to get

j′(t) = −1

2

∫
Ω\ωt

νdiv
(
|D(ut)|2 V

)
.

Thus, we use Hadamard’s formula (see [15, Corollary 5.2.5]) to derive this function. For
t ∈ [0, T ), it holds

j′′(t) = −
∫

Ω\ωt
ν div

(
(D(ut) :D(u′t))V

)
− 1

2

∫
∂ωt

ν div
(
|D(ut)|2 V

)
(V · nt)

= −1

2

∫
∂ωt

ν
(

2(D(ut) :D(u′t)) +∇(|D(ut)|2) · V + |D(ut)|2 divV
)

(V · nt)

= −1

2

∫
∂ωt

ν
(

2(D(ut) :D(u′t)) +∇(|D(ut)|2) · V
)

(V · nt), (3.4)

since we work with a divergence free vector field V . Moreover,∫
∂ωt

νD(ut) :D(u′t) (V · nt) = 2

∫
∂ωt

ν∇ut :D(u′t)(V · nt)

= 2

∫
∂ωt

∇ut : (νD(u′t)− p′tI)(V · nt).

Here we used that the solution ut of Stokes problem is divergence free in Ω\ωt to get∫
∂ωt

∇ut : (p′t I)(V · nt) =

∫
∂ωt

p′t divut(V · nt) = 0.

Moreover, ut satisfies the Dirichlet boundary condition ut = 0 on ∂ωt, and then it follows
that ∇ut = ∂ntut ⊗ nt on ∂ωt. Thus,∫

∂ωt

νD(ut) :D(u′t) (V · nt) = 2

∫
∂ωt

∇ut :σ(u′t, p
′
t)(V · nt)

= 2

∫
∂ωt

∂ntut ·
(
σ(u′t, p

′
t) nt

)
(V · nt). (3.5)

Then, combining Equalities (3.4) and (3.5),

j′′(t) = −2

∫
∂ωt

∂ntut · (σ(u′t, p
′
t)nt)(V · nt)−

1

2

∫
∂ωt

ν∇(|D(ut)|2) · V (V · nt).

Finally, since the shape derivative u′t satisfies (3.2) and in particular u′t = −∂ntut(V · nt)
on ∂ωt,

j′′(t) = 2

∫
∂ωt

u′t · (σ(u′t, p
′
t)nt)−

1

2

∫
∂ωt

ν∇(|D(ut)|2) · V (V · nt). (3.6)

3.3 At a critical shape

We recall that ω∗ is a critical shape. Now, we study the expression of j′′(0) and then use
the fact that ω∗ is a critical shape. The previous characterization of j′′(t) gives, for t = 0,
the expression

j′′(0) = 2

∫
∂ω∗

u′ · (σ(u′, p′)n)︸ ︷︷ ︸
=:J1

− 1

2

∫
∂ω∗

ν∇(|D(u)|2) · V (V · n)︸ ︷︷ ︸
=:J2

. (3.7)

that we split into two terms we will study separately.
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Study of J1. We first introduce the Steklov-Poincaré operator of Displacement-to-Traction
also called Dirichlet-to-Neumann operator and prove that this operator is positive.

Lemma 3.1. We consider Ω and ω two Lipschitz open sets of Rd (d = 2, 3) such that
ω ⊂⊂ Ω and Ω\ω is connected. For h ∈ H1/2(∂ω), let us define the following Steklov-
Poincaré operator:

DN : H1/2(∂ω) −→ H−1/2(∂ω)
h 7−→ σ(U , P )n,

where (U , P ) ∈ H1(Ω\ω)× L2(Ω\ω) solves
−div (σ(U , P )) = 0 in Ω\ω

divU = 0 in Ω\ω
U = 0 on ∂Ω
U = h on ∂ω.

(3.8)

Then, there exists a constant c depending of Ω and ω such that

〈DN (h) , h〉H−1/2(∂ω),H1/2(∂ω) ≥ c ‖h‖
2
H1/2(∂ω)

. (3.9)

Proof. Using U as a test function in Problem (3.8), we obtain

〈DN (h) , h〉H−1/2(∂ω),H1/2(∂ω) =
1

2
ν ‖D(U)‖2L2(Ω\ω) .

Then, since U = 0 on ∂Ω, Korn’s inequality (see for example [16, eq. (2.14) page 19]) leads

〈DN (h) , h〉H−1/2(∂ω),H1/2(∂ω) ≥ c ‖U‖
2
H1(Ω\ω) ≥ c ‖h‖

2
H1/2(∂ω)

.

Consider Problem (3.2) (for t = 0) solved by the shape derivative (u′, p′). Then,
noticing that, since divu′ = 0,

−ν∆u′ +∇p′ = −div (νD(u′)) +∇p′ = −div (σ(u′, p′)),

and that u′ = −∂nu (V · n) on ∂ω∗, we get∫
∂ω∗

u′ · (σ(u′, p′)n) =

∫
∂ω∗

∂nu(V · n)DN (∂nu(V · n)).

Hence, there exists a constant c > 0 such that

J1 ≥ c ‖∂nu (V · n)‖2
H1/2(∂ω∗)

= cΛ ‖V · n‖2
H1/2(∂ω∗)

. (3.10)

We used the coercivity of the operator DN ((3.9) in Lemma 3.1) and the Euler-Lagrange
equation |∂nu|2 = Λ according to (3.3)

Second term J2. Let us now study the second term of the characterization of j′′(0) given
by (3.7). We recall that, according to subsection 2.2, only normal perturbation directions
are considered. Thus, we focus on∫

∂ω∗
ν∇(|D(u)|2) · n (V · n)2.

We have to compute ν∇(|D(u)|2) · n. This is the object of next Lemma.
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Lemma 3.2. It holds

ν∇
(
|D(u)|2

)
· n = 4

(
ν(d− 1)HΛ + ν tbF b +∇τp · b

)
on ∂ω∗, (3.11)

where

• b is the projection of ∂nu on the tangential space of ∂ω∗;

• F is the second fundamental form of the surface ∂ω∗;

• ∇τ denotes the tangential gradient.

Proof. By using local coordinates as in [11] or [10, 9], we can assume that ω∗ is locally
above the graph of a function f : (−ε, ε)d−1 → R (of class C4,α) which is such that
f(0) = ∂if(0) = 0 for i = 1, . . . , d− 1.

For all x ∈ (−ε, ε)d−1, noticing n = (n1, . . . , nd),

∇
(
|D(u)(x, f(x))|2

)
·n(x, f(x)) = ∇

 d∑
i,j=1

(∂iuj(x, f(x)) + ∂jui(x, f(x)))2

·n(x, f(x))

=
d∑

k=1

∂k

 d∑
i,j=1

(∂iuj(x, f(x)) + ∂jui(x, f(x)))2

nk(x, f(x))

= 2

d∑
i,j,k=1

(∂2
kiuj(x, f(x)) + ∂2

kjui(x, f(x)))(∂iuj(x, f(x)) + ∂jui(x, f(x)))nk(x, f(x)).

Then, for x = 0, since n(0, f(0)) = (0, . . . , 0, 1) in our system of coordinates,

∇
(
|D(u)(0, f(0))|2

)
· n(0, f(0))

= 2
d∑

i,j=1

(∂2
diuj(0, f(0)) + ∂2

djui(0, f(0)))(∂iuj(0, f(0)) + ∂jui(0, f(0))).

Moreover, since u = 0 on ∂ω∗, we have ∂iuj(0, f(0)) = 0 for all i = 1, . . . , d − 1 and
j = 1, . . . , d. In addition, since divu = 0 in Ω\ω, it follows that ∂dud(0, f(0)) = 0. Then,

ν∇
(
|D(u)(0, f(0))|2

)
· n(0, f(0)) = 4

d−1∑
j=1

ν
(
∂2
dduj(0, f(0)) + ∂2

djud(0, f(0))
)
∂duj(0, f(0)).

(3.12)
Let us now interpret the boundary condition on ∂ω∗, that is

u(x, f(x)) = 0 for x ∈ (−ε, ε)d−1.

By differentiation, for i, j = 1, . . . , d− 1 and k = 1, . . . , d,

∂juk(x, f(x)) + ∂jf(x)∂duk(x, f(x)) = 0

and

∂2
ijuk(x, f(x)) + ∂if(x)∂2

djuk(x, f(x)) + ∂2
ijf(x)∂duk(x, f(x))

+ ∂jf(x)
(
∂2
iduk(x, f(x)) + ∂if(x)∂2

dduk(x, f(x))
)

= 0.
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For x = 0, since f(0) = ∂if(0) = 0 for i = 1, . . . , d− 1,

∂2
ijuk(0, f(0)) + ∂2

ijf(0)∂duk(0, f(0)) = 0 ∀i, j = 1, . . . , d− 1, ∀k = 1, . . . , d. (3.13)

Notice that−ν∆u+∇p = 0 in Ω\ω, i.e., since divu = 0 in Ω\ω, −νdiv (D(u))+∇p = 0
in Ω\ω. Hence, for j = 1, . . . , d and any x ∈ (−ε, ε)d−1,

ν
(
∂2
dduj(x, f(x))+∂2

djud(x, f(x))
)

= −
d−1∑
i=1

[
ν
(
∂2
iiuj(x, f(x))+∂2

ijui(x, f(x))
)
+∂jp(x, f(x))

]
.

(3.14)

In Equality (3.13) with j = i, we sum on i to get, since
d−1∑
i=1

∂2
iif(0) = (d− 1)H(0), where H

is the mean curvature of ∂ω∗ (see for example the comment after Definition 5.4.7 in [15]),
that for all k = 1, . . . , d

d−1∑
i=1

∂2
iiuk(0, f(0)) + (d− 1)H(0)∂duk(0, f(0)) = 0. (3.15)

Hence, using (3.13) and (3.15), Equality (3.14) writes as follows for j = 1, . . . , d− 1:

ν
(
∂2
dduj(0, f(0)) + ∂2

djud(0, f(0))
)

= ν (d− 1)H(0) ∂duj(0, f(0)) + ν
d−1∑
i=1

∂2
ijf(0)∂dui(0, f(0)) + ∂jp(0, f(0)).

Therefore, Equality (3.12) writes in the following form:

ν∇
(
|D(u)(0, f(0))|2

)
· n(0, f(0)) =

4

d−1∑
j=1

[(
ν(d− 1)H(0) (∂duj(0, f(0)))2 + ν

d−1∑
i=1

∂2
ijf(0)∂dui(0, f(0))∂duj(0, f(0))

+ ∂jp(0, f(0))∂duj(0, f(0))

)]
.

Hence, since |∂du|2 = Λ (see (3.3)), Lemma 3.2 follows.

Conclusion. Finally, gathering (3.7), (3.10) and (3.11), we obtain

D2J(ω∗) · V · V ≥ cΛ ‖V · n‖2H1/2(∂ω∗) − 2

∫
∂ω∗

(
ν(d− 1)HΛ + ν tbF b +∇τp · b

)
(V · n)2.

Hence, using the regularity of ∂ω∗ and of the solution u, the quantity

ν(d− 1)HΛ + ν tbF b +∇τp · b

belongs to L∞(∂ω∗) and the second term behaves like ‖V · n‖2L2(∂ω∗). Hence, a natural
assumption is that the shape Hessian is coercive in the H1/2(∂ω∗) sense. This is the case if

ν(d− 1)HΛ + ν tbF b +∇τp · b < 0 on ∂ω∗. (3.16)

Note that this condition couples geometrical effect with the solution itself. In practice,
the condition (3.16) cannot easily be tested theoretically since it couples the curvature of
the object with derivatives of the flow. It might be tested numerically, however it will
requires a curved mesh for the surface and the fluid domain and high order elements to
catch the desired effects of curvature and the derivatives of the couple (u, p). Such a precise
computation requires specific numerical attention.
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Statement of the result We have proved the following theorem:

Theorem 3.3. Let us assume that Estimate (3.16) is satisfied. Then, there exists a con-
stant c > 0 such that, for all V ∈ U with divV = 0,

j′′(0) = D2J(ω∗) · V · V ≥ c ‖V · n‖2H1/2(∂ω∗) .

4 Stability of the drag minimization problem

4.1 The results

We recall that ω∗ ∈ Oδ is assumed to have a C4,α boundary (α ∈ (0, 1)). Moreover, in
this section, the shape Hessian is assumed to be coercive at ω∗ in the following sense: for
any V in the tangent space defined by the constraints that is with∫

∂ω∗
V · n = 0,

it holds
j′′(0) = D2J(ω∗) · V · V ≥ c ‖V · n‖2H1/2(∂ω∗) . (4.1)

The main result of this section states the stability of the drag minimization problem:

Theorem 4.1. If ω∗ is a critical shape for J where (4.1) holds, there exists η > 0 such
that, for all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η, |Θ(ω∗)| = |ω∗| and Θ 6= I,

J(Θ(ω∗)) > J(ω∗).

Consider the admissible vector field Y Θ ∈ U defined in subsection 2.2. By assumption

j′′(0) ≥ C ‖Y Θ · n‖2H1/2(∂ω∗) .

By the order two Taylor expansion

J(ω) = j(1) = j(0) +

∫ 1

0
(1− x)j′′(x)dx = J(ω∗) +

∫ 1

0
(1− x)j′′(x)dx,

this theorem is a direct consequence of the following theorem (and of the assumption of
the H1/2 coercivity of the shape Hessian):

Theorem 4.2. There exists η0 > 0 and a function w : (0, η0) → R with lim
r↘0

w(r) = 0

(which depends only on Ω, ω∗ and the data) such that, for all η ∈ (0, η0) and all Θ ∈ U with
‖Θ− I‖C2,1(Rd) < η and |Θ(ω∗)| = |ω∗|, there exists a divergence free vector field Y Θ ∈ U
constructed in (2.2) whose the flow Φt defines a path (ωt := Φt(ω

∗))t∈[0,1] between ω
∗ and

Θ(ω∗), such that, for all t ∈ [0, 1], the following estimate holds:∣∣j′′(t)− j′′(0)
∣∣ ≤ w(η) ‖Y Θ · n‖2H1/2(∂ω∗) .

Indeed, there is a non negative η such that w(η) ≤ C/2, so that

J(ω) ≥ J(ω∗) +
C

4
‖Y Θ · n‖2H1/2(∂ω∗) > J(ω∗). (4.2)

In the following section, we prove Theorem 4.2 that extends to the Stokes case [9,
Theorem 3] (or [10, Theorem 2.1]). We follow the same strategy that the one used in these
references.
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Let Θ ∈ U with ‖Θ− I‖C2,1(Rd) small enough. For t ∈ [0, 1], we consider the solution

(ut, pt) ∈ C2,α(Ω\ωt) ×
[
C1,α(Ω\ωt) ∩ L2

0(Ω\ωt)
]
of the perturbed Stokes problem (3.1).

We define

vt := ut ◦ Φt and qt := pt ◦ Φt.

Hence, using the change of variables x = Φty in Problem (3.1), we prove that
−div (∇vtA(t)) + div (qtB(t)) = 0 in Ω\ω∗

∇vt :B(t) = 0 in Ω\ω∗
vt = g in ∂Ω
vt = 0 in ∂ω∗,

(4.3)

with

Jact := det (DΦt) ∈ C1,1(Rd)
A(t) := Jact ν (DΦt)

−1 (tDΦt

)−1 ∈ C1,1(Rd,Md,d)

B(t) := Jact
(
tDΦt

)−1 ∈ C1,1(Rd,Md,d).

4.2 Preliminary results: bounds on the state function

Let us first focus on the proof of the following preliminary result:

Proposition 4.3. There exists a function w : [0, 1]→ R with lim
r↘0

w(r) = 0 such that

sup
t∈[0,1]

‖ut ◦ Φt − u‖C2(Ω\ω∗) ≤ w
(
‖Θ− I‖C2,1(Rd)

)
sup
t∈[0,1]

‖pt ◦ Φt − p‖C1(Ω\ω∗) ≤ w
(
‖Θ− I‖C2,1(Rd)

)
.

Notice that we can assume the existence of a constant C such that:

w(η) ≥ Cη. (4.4)

since if w(η) < Cη, we can redefine w as w(η) = Cη (which tends to 0 with η).
First, let us note that, using a differentiability result similar than the one given in [3,

Lemma 3.2], there exist η2 > 0 and a constant c > 0, depending only on the data, such
that, for all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η2,

‖vt − u‖C2,α(Ω\ω∗) ≤ c ‖Θ− I‖C2,1(Rd) and ‖qt − p‖C1,α(Ω\ω∗) ≤ c ‖Θ− I‖C2,1(Rd) .

Hence, we deduce immediately the following lemma:

Lemma 4.4. There exists η2 > 0 such that, for all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η2,
there exists a constant C depending only on the data and on ‖Θ‖C2,1(Rd) such that, for all
t ∈ [0, 1],

‖vt‖C2,α(Ω\ω∗) ≤ C and ‖qt‖C1,α(Ω\ω∗) ≤ C.
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Proof of Proposition 4.3. We use similar arguments than the ones used in [10, Proof of
Proposition 4.1]. The main ingredient is the compact embedding of C2,α(Ω\ω∗) into
C2(Ω\ω∗) and of C1,α(Ω\ω∗) into C1(Ω\ω∗). Let η2 > 0 given by Lemma 4.4. Define,
for η ∈ (0, η2),

w(η) := sup
Θ∈U, ‖Θ−I‖C2,1(Rd)

<η

t∈[0,1]

(
‖vt − u‖C2(Ω\ω∗) + ‖qt − p‖C1(Ω\ω∗)

)
.

Lemma 4.4 guarantees that this quantity is well defined. Since the estimate of Proposi-
tion 4.3 is obvious, it remains to prove that lim

r↘0
w(r) = 0.

Let us proceed by contradiction assuming that lim
r↘0

w(r) 6= 0. Then, there exists a real

a > 0 and some sequences (tn)n∈N ⊂ [0, 1], (Θn)n∈N ⊂ U with ‖Θn − I‖C2,1(Rd) < η2 for
all n ∈ N, (ωn := ΦΘn,tn(ω∗))n∈N, (vn := un ◦ ΦΘn,tn)n∈N and (qn := pn ◦ ΦΘn,tn)n∈N such
that for all n ∈ N

‖Θn − I‖C2,1(Rd) ≤
1
n

‖vn − u‖C2(Ω\ω∗) + ‖qn − p‖C1(Ω\ω∗) ≥ a > 0.
(4.5)

Using Lemma 4.4, the sequence (vn)n is bounded in C2,α(Ω\ω∗) and (qn)n is bounded
in C1,α(Ω\ω∗). Hence, since C2,α(Ω\ω∗) (respectively C1,α(Ω\ω∗)) is compactly imbedding
in C2(Ω\ω∗) (respectively in C1(Ω\ω∗)), there exist two sub-sequences converging respec-
tively in C2(Ω\ω∗) to some ulim and in C1(Ω\ω∗) to some plim. Moreover, there exists a
sub-sequence (tn) ⊂ [0, 1] which converges to some tlim. Then, notice that

− div (∇vnA(tn,Θn)) + div (qnB(tn,Θn)) + ν∆ulim −∇plim
= −div (∇vnA(tn,Θn)) + div (qnB(tn,Θn)) + ν∆vn −∇qn

− ν∆ (vn − ulim) +∇(qn − plim), in Ω\ω∗

and

∇vn :B(tn,Θn)− divulim = ∇vn :B(tn,Θn)− div vn + div (vn − ulim) in Ω\ω∗.

Let us focus on the second equality. We proceed in the same way for the first one. Since
vn → ulim in C2(Ω\ω∗), we obtain, passing to the limit in the previous equality and using
Problem (4.3) solved by the couple (vn, qn), that

divulim = 0 in Ω\ω∗.

Thus, using the boundary conditions, we obtain that the couple (ulim, plim) solves
−ν∆ulim +∇plim = 0 in Ω\ω∗

divulim = 0 in Ω\ω∗
ulim = g on ∂Ω
ulim = 0 on ∂ω∗.

The uniqueness of such a solution implies (ulim, plim) = (u, p) which contradicts the second
inequality of (4.5).
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4.3 Proof of Theorem 4.2

Again, we fix Θ ∈ U a diffeomorphism with ‖Θ− I‖C2,1(Rd) < η2 such that |Θ(ω∗)| = |ω∗|.
As previously, we consider the vector field Y Θ, the associated flow Φt and the domains
(ωt := Φt(ω

∗))t∈[0,1] and we set mY Θ
:= Y Θ · ñ. The constant η2 is given by Lemma 4.4.

We denote by C any constant depending only on ‖Θ‖C2,1(Rd).
We have proved (see (3.6)) that

D2J(ωt) · Y Θ · Y Θ = −1

2

∫
∂ωt

ν
(
∇(|D(ut)|2) · Y Θ

)
(Y Θ · nt)︸ ︷︷ ︸

=:I1(t)

+ 2

∫
∂ωt

u′t · (σ(u′t, p
′
t)nt)︸ ︷︷ ︸

=:I2(t)

.

This decomposition is similar as the one in J1 and J2 for the Hessian at the critical shape.
It is natural since the two depends on the deformation parameter Y Θ through two distinct
norms. Hence, we will prove the following two lemmas:

Lemma 4.5. We have

|I1(t)− I1(0)| ≤ C w(‖Θ− I‖C2,1(Rd)) ‖mY Θ
‖2L2(∂ω∗) .

Lemma 4.6. We have

|I2(t)− I2(0)| ≤ C w(‖Θ− I‖C2,1(Rd)) ‖mY Θ
‖2H1/2(∂ω∗) .

In both lemmas, w denotes the modulus of continuity introduced in Proposition 4.3.
Using the previous characterization of D2J(ωt)·Y Θ·Y Θ and these two lemmas, Theorem 4.2
is proved. Hence, it now suffices to prove these lemmas. To simplify the notations, we set

η := ‖Θ− I‖C2,1(Rd) ,

and, in the sequel, we denote all the constants depending only on the data and on the
norm ‖Θ‖C2,1(Rd) by C.

4.3.1 Proof of Lemma 4.5

We know that

∇ut ◦ Φt = t [DΦt]
−1∇vt and D(ut) ◦ Φt = t [DΦt]

−1D(vt).

Hence, replacing ut by |D(ut)|2,

∇
(
|D(ut)|2

)
◦ Φt = t [DΦt]

−1∇(|D(ut)|2 ◦ Φt) = t [DΦt]
−1∇

(∣∣∣t [DΦt]
−1D(vt)

∣∣∣2) .
Thus, using the change of variables x = Φty,

I1(t) =

∫
∂ω∗

ν tDΦ−1
t ∇

(∣∣tDΦ−1
t D(vt)

∣∣2) · (Y Θ ◦ Φt) [(Y Θ ◦ Φt) · (nt ◦ Φt)] J(t)

=

∫
∂ω∗

ν |mY Θ
◦ Φt|2 tDΦ−1

t ∇
(∣∣tDΦ−1

t D(vt)
∣∣2) · n (n · (nt ◦ Φt)) J(t), (4.6)

where J(t) := det DΦt/‖(tDΦ−1
t )n‖ is the surface jacobian. In order to study I1(t)− I1(0),

let us define

a0(t) := mY ◦ Φt, a1(t) := tDΦ−1
t ∇

(∣∣tDΦ−1
t D(vt)

∣∣2) · n,
a2(t) := n · (nt ◦ Φt) , a3(t) := J(t).
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Using the estimate concerning nt ◦ Φt given in Lemma 2.1, we have

‖a2(t)‖L∞(∂ω∗) = ‖n · (nt ◦ Φt)‖L∞(∂ω∗) ≤ C

‖a2(t)− a2(0)‖L∞(∂ω∗) = ‖n · (nt ◦ Φt − n)‖L∞(∂ω∗) ≤ C η.
(4.7)

Moreover, using the estimate concerning J(t) given in Lemma 2.1, we have

‖a3(t)‖L∞(∂ω∗) = ‖J(t)‖L∞(∂ω∗) ≤ C

‖a3(t)− a3(0)‖L∞(∂ω∗) = ‖J(t)− 1‖L∞(∂ω∗) ≤ C η.
(4.8)

Let us now prove that, for all t ∈ [0, 1],

‖a1(t)‖L∞(∂ω∗) ≤ C and ‖a1(t)− a1(0)‖L∞(∂ω∗) ≤ C w(η), (4.9)

where w is the modulus of continuity given in Proposition 4.3. Using the fact that vt is
bounded in C2,α(Ω\ω∗) (see Lemma 4.4), we have immediately

‖a1(t)‖L∞(∂ω∗) =
∥∥∥tDΦ−1

t ∇
(∣∣tDΦ−1

t D(vt)
∣∣2) · n∥∥∥

L∞(∂ω∗)
≤ C.

Let us define ξ(t) := ∇
(∣∣tDΦ−1

t D(vt)
∣∣2). Inserting ξ(t), we obtain

‖a1(t)− a1(0)‖L∞(∂ω∗) =
∥∥∥(tDΦ−1

t − I
)
ξ(t) · n +

(
ξ(t)−∇

(
|D(u)|2

))
· n
∥∥∥

L∞(∂ω∗)

≤ C ‖ξ(t)‖L∞(∂ω∗)

∥∥tDΦ−1
t −I

∥∥
L∞(∂ω∗)

+ C
∥∥∥ξ(t)−∇(|D(u)|2

)∥∥∥
L∞(∂ω∗)

≤ C
∥∥tDΦ−1

t − I
∥∥

L∞(∂ω∗)
+ C

∥∥∥ξ(t)−∇(|D(u)|2
)∥∥∥

L∞(∂ω∗)
,

since ‖ξ(t)‖L∞(∂ω∗) ≤ C using (2.3). By Estimate (2.3), we have
∥∥tDΦ−1

t − I
∥∥

L∞(∂ω∗)
≤ Cη

and using the estimate on the norm of vt given by Proposition 4.3,∥∥∥ξ(t)−∇(|D(u)|2
)∥∥∥

L∞(∂ω∗)
≤ w(η).

Hence, we obtain the second estimate of (4.9). Finally, Lemma 2.1 ensures that

‖a0(t)‖L2(∂ω∗) = ‖mY Θ
◦ Φt‖L2(∂ω∗) ≤ C ‖mY Θ

‖L2(∂ω∗)

‖a0(t)− a0(0)‖L2(∂ω∗) ≤ C η ‖mY Θ
‖L2(∂ω∗) .

(4.10)

According to the expression (4.6) of I1 and the definition of ai (i = 0, . . . , 3),

I1(t)−I1(0) =

∫
∂ω∗

ν
(
a2

0(t)− a2
0(0)

) 3∏
i=1

ai(t)+

∫
∂ω∗

ν a2
0(t)

(
3∏
i=1

ai(t)−
3∏
i=1

ai(0)

)
. (4.11)

The last integral of (4.11) is bounded by

C ‖mY Θ
‖2L2(∂ω∗)

∥∥∥∥∥
3∏
i=1

ai(t)−
3∏
i=1

ai(0)

∥∥∥∥∥
L∞(∂ω∗)

.

Using the estimates on the norms of ai (i = 1, . . . , 3) given by (4.7), (4.8) and (4.9) and
the fact that w(η) ≥ C η by Assumption (4.4), we have∥∥∥∥∥

3∏
i=1

ai(t)−
3∏
i=1

ai(0)

∥∥∥∥∥
L∞(∂ω∗)

≤ C
3∑
i=1

‖ai(t)− ai(0)‖L∞(∂ω∗) ≤ C(w(η) + η) ≤ C w(η).
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Moreover, the first integral of (4.11) is bounded by∥∥∥∥∥
3∏
i=1

ai(t)

∥∥∥∥∥
L∞(∂ω∗)

‖a0(t)− a0(0)‖L2(∂ω∗) ‖a0(t) + a0(0)‖L2(∂ω∗)

and using the estimates on the norms of ai (i = 0, . . . , 3) given by (4.7), (4.8), (4.9)
and (4.10) and the remark that w(η) ≥ C η, it is bounded by

C w(η) ‖mY Θ
‖2L2(∂ω∗) ,

which concludes the proof.

4.3.2 Proof of Lemma 4.6

Since u′t = −∂ntut(Y Θ · nt) on ∂ωt,

u′t = −mY Θ
∂ntut(nt · ñ) on ∂ωt. (4.12)

Let us define the following Steklov-Poincaré operator corresponding to DN (introduced in
Lemma 3.1) on ∂ωt:

Ct : H1/2(∂ωt) −→ H−1/2(∂ωt)
zt 7−→ Ct(zt) := σ(Zt,Πt)nt,

where (Zt,Πt) ∈ H1(Ω\ωt)× L2(Ω\ωt) solves
−div (σ(Zt,Πt)) = 0 in Ω\ωt

divZt = 0 in Ω\ωt
Zt = 0 on ∂Ω
Zt = zt on ∂ωt.

(4.13)

We obviously have
1

2
ν ‖D(Zt)‖2L2(Ω\ωt) = 〈Ct(zt) , zt〉∂ωt . (4.14)

Let us define zt := −mY Θ
∂ntut(nt · ñ). Thus, according to the boundary condition of u′t

(see (4.12)), σ(u′t, p
′
t)nt = Ct(zt) and, using the definition of I2, we obtain

I2(t) = 2

∫
∂ωt

∂ntutCt(zt)(Y Θ · nt).

Hence, using Estimate (4.14) on the norm of D(·), we get

I2(t) = −2

∫
∂ωt

ztCt(zt) = −ν ‖D(Zt)‖2L2(Ω\ωt) ,

where (Zt,Πt) ∈ H1(Ω\ωt)× L2(Ω\ωt) solves (4.13).
We want now to estimate

I2(t)− I2(0) =

∫
Ω\ω∗

ν |D(Z0)|2 −
∫

Ω\ωt
ν |D(Zt)|2

=

∫
Ω\ω∗

ν |D(Z0)|2 −
∫

Ω\ω∗
ν
∣∣∣tDΦ−1

t D(Z̃t)
∣∣∣2 Jact,

where Z̃t := Zt ◦ Φt. Since divY Θ = 0, we get Jact = 1. We assume for a while that the
following lemma is proved:
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Lemma 4.7. For all t ∈ [0, 1],

‖z̃t‖H1/2(∂ω∗) ≤ C ‖mY Θ
‖H1/2(∂ω∗) , ‖z̃t − z0‖H1/2(∂ω∗) ≤ Cw(η) ‖mY Θ

‖H1/2(∂ω∗) ,∥∥∥Z̃t

∥∥∥
H1(Ω\ω∗)

≤ C ‖mY Θ
‖H1/2(∂ω∗) and

∥∥∥Z̃t −Z0

∥∥∥
H1(Ω\ω∗)

≤ Cw(η) ‖mY Θ
‖H1/2(∂ω∗) .

Using this lemma and the fact that
∥∥tDΦ−1

t

∥∥
L∞(Rd)

≤ C and
∥∥tDΦ−1

t − I
∥∥

L∞(Rd)
≤ Cη

(see Estimate (2.3)), we have

|I2(t)− I2(0)| =

∫
Ω\ω∗

ν |D(Z0)|2 −
∫

Ω\ω∗
ν
∣∣∣tDΦ−1

t D(Z̃t)
∣∣∣2

≤ C
∥∥∥D(Z0) + tDΦ−1

t D(Z̃t)
∥∥∥

L2(Ω\ω∗)

∥∥∥D(Z0)− tDΦ−1
t D(Z̃t)

∥∥∥
L2(Ω\ω∗)

≤ C

(
‖D(Z0)‖L2(Ω\ω∗) +

∥∥∥tDΦ−1
t D(Z̃t)

∥∥∥
L2(Ω\ω∗)

)
(∥∥∥tDΦ−1

t D(Z̃t)− tDΦ−1
t D(Z0)

∥∥∥
L2(Ω\ω∗)

+
∥∥tDΦ−1

t D(Z0)−D(Z0)
∥∥

L2(Ω\ω∗)

)
≤ C ‖mY Θ

‖H1/2(∂ω∗)

(∥∥∥tDΦ−1
t D(Z̃t)− tDΦ−1

t D(Z0)
∥∥∥

L2(Ω\ω∗)

+
∥∥tDΦ−1

t D(Z0)−D(Z0)
∥∥

L2(Ω\ω∗)

)
≤ C ‖mY Θ

‖H1/2(∂ω∗)

(∥∥∥D(Z̃t)−D(Z0)
∥∥∥

L2(Ω\ω∗)
+ Cη ‖D(Z0)‖L2(Ω\ω∗)

)
≤ C ‖mY Θ

‖H1/2(∂ω∗)

(
w(η) ‖mY Θ

‖H1/2(∂ω∗) + η ‖mY Θ
‖H1/2(∂ω∗)

)
.

The proof is completed. It remains to prove Lemma 4.7.

Proof of Lemma 4.7. We recall that

zt := −mY Θ
∂ntut(nt · ñ) and z̃t := zt ◦ Φt.

We use the following product lemma:

∀v ∈ H1/2(∂ω∗), w ∈ C1(∂ω∗), ‖vw‖H1/2(∂ω∗) ≤ C ‖v‖H1/2(∂ω∗) ‖w‖C1(∂ω∗)

for some constant C depending only on Ω\ω to get

‖z̃t‖H1/2(∂ω∗) ≤ C ‖mY Θ
‖H1/2(∂ω∗) ‖∂ntut(nt · n)‖C1(∂ω∗) .

Then, using the estimate on the norm of nt given by Lemma 2.1 and the estimate on the
norm of vt given by Proposition 4.3, we obtain the first estimate of the lemma:

‖z̃t‖H1/2(∂ω∗) ≤ C ‖mY Θ
‖H1/2(∂ω∗) . (4.15)

Defining ñt := nt ◦ Φt, we have

z̃t − z0 = z̃t −mY Θ
∂nu = mY Θ

(∂nu− ∂ntut ◦ Φt(ñt · n)) on ∂ω∗.

However,

‖∂nu− ∂ntut ◦ Φt(ñt · n)‖C1(∂ω∗) ≤ ‖∂nu (1− (ñt · n))‖C1(∂ω∗)

+ ‖(ñt · n) (∂nu− ∂ntut ◦ Φt)‖C1(∂ω∗) .
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Moreover, using the estimate on the norm of nt given by Lemma 2.1, we have

‖∂nu (1− (ñt · n))‖C1(∂ω∗) ≤ Cη,

since ‖∂nu‖C1(∂ω∗) ≤ C. Now, let us bound ‖(ñt · n) (∂nu− ∂ntut ◦ Φt)‖C1(∂ω∗). Using
again Lemma 2.1, Estimate (2.3) and Proposition 4.3, we obtain

‖(ñt · n) (∂nu− ∂ntut ◦ Φt)‖C1(∂ω∗) =
∥∥(ñt · n)

(
∂nu− tDΦ−1

t ∇vtñt
)∥∥

C1(∂ω∗)

≤ C
(
‖∇u(nt − n)‖C1(∂ω∗) +

∥∥(∇u− tDΦ−1
t ∇vt

)
nt
∥∥
C1(∂ω∗)

)
≤ Cw(η),

since we can assume η ≤ Cw(η) (see (4.4)). Hence, the second inequality of the lemma is
proved:

‖z̃t − z0‖H1/2(∂ω∗) ≤ Cw(η) ‖mY Θ
‖H1/2(∂ω∗) . (4.16)

Since Z0 solves the Stokes system with z0 as interior boundary condition, the following
energy estimate holds using the classical energy estimate concerning the Stokes system (see
for example the books [14, 12]) and the first estimate (4.15)

‖Z0‖H1(Ω\ω∗) + ‖Π0‖L2(Ω\ω∗) ≤ C ‖z0‖H1/2(∂ω∗) ≤ C ‖mY Θ
‖H1/2(∂ω∗) . (4.17)

With this inequality, it remains to prove the inequality concerning
∥∥∥Z̃t −Z0

∥∥∥
H1(Ω\ω∗)

.

Indeed, we will then have∥∥∥Z̃t

∥∥∥
H1(Ω\ω∗)

≤ Cw(η) ‖mY Θ
‖H1/2(∂ω∗) + ‖Z0‖H1(Ω\ω∗) ≤ C ‖mY Θ

‖H1/2(∂ω∗) .

The couple (Zt,Πt) ∈ H1(Ω\ωt)×L2(Ω\ωt) solves (4.13). Thus, defining Z̃t := Zt ◦Φt

and Π̃t := Π ◦ Φt, we prove that
−div

(
∇Z̃tA(t)

)
+ div

(
Π̃tB(t)

)
= 0 in Ω\ω∗

∇Z̃t :B(t) = 0 in Ω\ω∗
Z̃t = 0 on ∂Ω

Z̃t = z̃t on ∂ω∗.

Using the problem solved by (Z0,Π0), this problem can be rewritten as
ν∆(Z̃t −Z0)−∇(Π̃t −Π0) = L1(t)

(
Z̃t, Π̃t

)
− S

(
Z̃t, Π̃t

)
in Ω\ω∗

−div
(
Z̃t −Z0

)
= L2(t)(Z̃t)− div

(
Z̃t

)
in Ω\ω∗

Z̃t −Z0 = 0 on ∂Ω

Z̃t −Z0 = z̃t − z0 on ∂ω∗,

with

L1(t)
(
Z̃t, Π̃t

)
:= −div

(
∇Z̃tA(t)

)
+ div

(
Π̃tB(t)

)
L2(t)(Z̃t) := ∇Z̃t :B(t)

S
(
Z̃t, Π̃t

)
:= −ν∆(Z̃t) +∇(Π̃t).
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Thus, using the energy estimate,∥∥∥Z̃t −Z0

∥∥∥
H1(Ω\ω∗)

+
∥∥∥Π̃t −Π0

∥∥∥
L2(Ω\ω∗)

≤ C
(
‖z̃t − z0‖H1/2(∂ω∗)∥∥∥(L1(t)− S)

(
Z̃t, Π̃t

)∥∥∥
H−1(Ω\ω∗)

+
∥∥∥(L2(t)− div )

(
Z̃t)
)∥∥∥

L2(Ω\ω∗)

)
. (4.18)

We have

(L1(t)− S)
(
Z̃t, Π̃t

)
= (L1(t)− S)

(
Z̃t −Z0, Π̃t −Π0

)
+ (L1(t)− S)

(
Z̃0, Π̃0

)
(L2(t)− div )

(
Z̃t)
)

= (L2(t)− div )
(
Z̃t −Z0

)
+ (L2(t)− div )

(
Z̃0)

)
.

Let us assume for a while

‖(L1(t)− S) (w, q)‖H−1(Ω\ω∗) ≤ Cη
(
‖w‖H1(Ω\ω∗) + ‖q‖L2(Ω\ω∗)

)
‖(L2(t)− div ) (w)‖L2(Ω\ω∗) ≤ Cη ‖w‖H1(Ω\ω∗) .

(4.19)

Then,∥∥∥(L1(t)− S)
(
Z̃t, Π̃t

)∥∥∥
H−1(Ω\ω∗)

+
∥∥∥(L2(t)− div )

(
Z̃t

)∥∥∥
L2(Ω\ω∗)

≤ Cη
(∥∥∥Z̃t −Z0

∥∥∥
H1(Ω\ω∗)

+
∥∥∥Π̃t −Π0

∥∥∥
L2(Ω\ω∗)

)
+ Cη ‖Z0‖H1(Ω\ω∗) .

Then, using this inequality in Estimate (4.18) and Estimates (4.16) and (4.17) on the norms
of z̃t − z0 and Z0, we obtain∥∥∥Z̃t −Z0

∥∥∥
H1(Ω\ω∗)

(1− Cη) ≤ Cw(η) ‖V ‖H1/2(∂ω∗) ,

which concludes the proof.
It remains to prove Estimate (4.19). Let us consider Φ ∈ H1

0(Ω\ω∗). We have∣∣∣∣∣
∫

Ω\ω∗
(L1(t)− S) (w, q) ·Φ

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ω\ω∗
(−div (∇wA(t)) + div (qB(t)) + ν∆w −∇q) ·Φ

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ω\ω∗
((∇wA(t)) + qB(t) + ν∇w − qI) :∇Φ

∣∣∣∣∣
≤ C ‖Φ‖H1

0(Ω\ω∗)

(
‖A(t)‖L2(Ω\ω∗) ‖w‖H1(Ω\ω∗)

+ ‖q‖L2(Ω\ω∗) ‖B(t)‖L2(Ω\ω∗) + ‖w‖H1(Ω\ω∗) + ‖q‖L2(Ω\ω∗)

)
≤ C ‖Φ‖H1

0(Ω\ω∗) η
(
‖w‖H1(Ω\ω∗) + ‖q‖L2(Ω\ω∗)

)
using Lemma 2.1 and Estimate (2.3). We proceed in the same way to prove that, for all
ξ ∈ L2(Ω\ω∗), ∣∣∣∣∣

∫
Ω\ω∗

(L2(t)− div ) (w) ξ

∣∣∣∣∣ ≤ C ‖ξ‖L2(Ω\ω∗) η ‖w‖H1(Ω\ω∗) ,

which concludes the proof of Estimate (4.19).
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5 Precised stability estimate

The main result of this section is a purely geometrical result valid for small smooth per-
turbations of a domain.

Proposition 5.1. In the assumptions of Section 2, there is a constant C that depends only
on Ω such that

Ld(Ω∆Ωper) ≤ C‖h‖L1 . (5.1)

Proof. We first consider the case of a smooth positive deformation function h and prove (5.1)
in this first case. Since h is positive, Ω is a subset of Ωper and hence

Ld(Ω∆Ωper) = Ld(Ωper)− Ld(Ω).

To this function, is associated the vector field V by the construction (2.1) of subsection 2.2
(in general or by (2.2) if a volume constraint has to satisfied). We then apply the classical
Lemma about variations of the volume

d

dt
Ld(Ωt) =

∫
∂Ωt

V · nt dσ∂Ωt(y)

to get along the flow of the field V :

Ld(Ωper)− Ld(Ω) =

∫ 1

0

∫
∂Ωt

V (y) · nt(y) dσ∂Ωt(y) dt

=

∫ 1

0

∫
∂Ωt

h(p∂Ω(y)) n(p∂Ω(y)) · nt(y) dσ∂Ωt(y) dt

=

∫ 1

0

∫
∂Ω
h(x)n(x) · nt(x+ tV (x))Jt(x) dσ∂Ω(x) dt

=

∫
∂Ω
h(x)

∫ 1

0
n(x) · nt(x+ tV (x))Jt(x) dt dσ∂Ω(x)

=

∫
∂Ω
h(x)

∫ 1

0
n(x+ tV (x)) · nt(x+ tV (x))Jt(x) dt dσ∂Ω(x),

where Jt is the surface jacobian. We estimate the middle term∫ 1

0
n(x+ tV (x)) · nt(x+ tV (x))Jt(x) dt

thanks to Lemma 2.1 and conclude. The same proof works for smooth negative deformation
field, then by density to any signed Lipschitz deformation.

For a general deformation, expressed with a smooth normal deformation h, we split
it into h = h+ − h− its positive and negative part and define V + and V − by the con-
struction (2.1). Then it suffices to notice that Ωper = Φ1(V −)[Φ1(V +)[Ω]]: the idea is
to first apply the field V + to match the inflating areas then the field V − to contract the
domain.

Now, in the context of our problem, Cauchy Schwarz inequality provides

‖h‖L1(∂ω∗) ≤ |∂ω∗|1/2‖h‖L2(∂ω∗) ≤ |∂ω∗|1/2‖h‖H1/2(∂ω∗),
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so that our previous stability estimates (4.2) provides the existence of a non negative real η
and of a constant C such that for any diffeomorphism Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η
and |Θ(Ω)| = |Ω|, it holds

J(ω) ≥ J(ω∗) +
C

4
‖Y Θ · n‖2H1/2(∂ω∗) ≥ J(ω∗) + C Ld(ω∗∆Θ(ω∗))2,

where Y Θ is defined in subsection 2.2. We have shown the precised estimate:

Theorem 5.2. If ω∗ is a critical shape for J where (4.1) holds, there exists η > 0 and
C > 0 depending only on Ω and ω∗ such that, for all Θ ∈ U with ‖Θ− I‖C2,1(Rd) < η,
|Θ(ω∗)| = |ω∗| and Θ 6= I,

J(Θ(ω∗)) > J(ω∗) + C Ld(ω∗∆Θ(ω∗))2.

Let us make a final comment: this result can be understood as a quantitative estimate
of the deviation from minimality for sets close to ω∗ in a strong sense (here the C2,α norm).
Similar results have been introduced recently. The present work corresponds to the first
step in extending to the drag functional ideas and result on isoperimetric problems, see [1].
In a second step, using additional regularity properties provided by the perimeter, Acerbi
et al. manage to extend this result on smooth domains to less regular sets.

6 Conclusion

This paper is, in some sense, a generalization to a vectorial of some previous work (see [10,
9]) where the stability of critical shapes is investigated for the scalar case. Indeed, we
here focused on the minimization problem of the energy dissipated by a newtonian and
incompressible fluid driven by the Stokes law. Then, we gave a sufficient condition for the
shape Hessian to be coercive in a weaker norm than the differentiability norm. However,
we showed that this coercivity is sufficient to prove that such a critical shape is a local
minimizer. Finally, we obtained a lower bound of the variations of the drag in terms of the
symmetric difference of the domain.

This paper may be extended to the case where the fluid motion is assumed to be
governed by the (stationary) Navier-Stokes equations. The most difficult part in order to
obtain analogous results seems to be the coercivity of the shape Hessian. Moreover, the
present work can be adapted to other classical boundary conditions. Finally, it should be
possible to adapt these results to unbounded domain. However, due to the approach using
derivatives, removing the regularity assumptions on the boundary and the deformations
seems out of reach without new ideas.
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